If it's not what You are looking for type in the equation solver your own equation and let us solve it.
84n^2+76n+16=0
a = 84; b = 76; c = +16;
Δ = b2-4ac
Δ = 762-4·84·16
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(76)-20}{2*84}=\frac{-96}{168} =-4/7 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(76)+20}{2*84}=\frac{-56}{168} =-1/3 $
| 6z^2+14z-80=0 | | 6b+2=28 | | 3(2x-9)=14 | | 2+6(x-4)=3x-18+3x= | | (2x)+(x+2)+(96)=180 | | 0c=35 | | (12+4x)(x)=352 | | X=4y-43 | | 4(6x+7)=19 | | 4(6x+7=19 | | 2w+2(w+1)=29 | | 216+x=x(x2-5)+6x | | (x+7)(x)=294 | | 7+x+14=38 | | X=5y-52 | | m+5/7=-3 | | 2m−10=4 | | -8(2x+1)=16x-8 | | x(7+x)+14=38 | | 7(v-6)=-3v+28 | | 54=-9+-2n | | 2x^2−x+8=0 | | 9=7m=+1-6 | | 3=u/4−1 | | 2x2−x+8=0 | | 2/3-b=31/3 | | 5u(u+2)+5=0 | | 3(x-6)=-7x+22 | | x^2-8x+16=6-x | | 11^10x+11=14641 | | (x−9)=4(9+1/3x) | | 2x-42=8 |